

Please write clearly in	olock capitals.	\
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		/

A-level CHEMISTRY

Unit 4 Kinetics, Equilibria and Organic Chemistry

Tuesday 14 June 2016

Afternoon

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- · a ruler with millimetre measurements
- a calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.
- You are expected to use a calculator, where appropriate.
- The Periodic Table/Data Sheet is provided as an insert.
- Your answers to the questions in **Section B** should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use scientific terminology accurately.

Advice

You are advised to spend about 80 minutes on Section A and about 25 minutes on Section B.

		Section A
		Answer all questions in the spaces provided.
1		Nitric acid (HNO ₃) is a strong acid. Ethanoic acid (CH ₃ COOH) is a weak acid.
1	(a)	Write an equation to show how ethanoic acid behaves as a weak acid in its reaction with
		water. [1 mark]
1	(b)	When pure ethanoic acid reacts with pure nitric acid, ethanoic acid acts as a base.
		Write an equation for this reaction. [1 mark]
1	(c)	Two beakers, A and B , each contain 100.0 cm ³ of 0.0125 mol dm ⁻³ nitric acid.
1	(c) (i)	Calculate the pH of the solution formed after 50.0 cm ³ of distilled water are added to beaker A .
		Give your answer to 2 decimal places. [2 marks]
1	(c) (ii)	sodium hydroxide are added to beaker B .
		Give your answer to 2 decimal places. [4 marks]

ic acid and use it to calculate the pH of the er to 2 decimal places. [4 marks] to beaker C until the pH of the solution
to beaker C until the pH of the solution
of ethanoic acid with sodium hydroxide. [1 mark]
in the solution with the pH of 4.84
[3 ma

1 (e)	Explain why chloroethanoic acid is a stronger acid than ethanoic acid.	[2 marks]
1 (f)	Explain why data books do not usually contain values of K_a for strong acids.	[2 marks]

2 Hemiacetals and acetals are compounds formed by the reaction of aldehydes with alcohols, such as the reaction of ethanal with ethanol.

CH₃CHO + CH₃CH₂OH
$$\longrightarrow$$
 H₃C $-$ C $-$ OCH₂CH₃ $|$ OH

a hemiacetal

2 (a) (i) Use your knowledge of carbonyl mechanisms to suggest the name of the mechanism of this reaction.

[1 mark]

2 (a) (ii) Outline how an ethanol molecule reacts with an ethanal molecule in the first step of this mechanism. Include two curly arrows to show the movement of electron pairs.

[2 marks]

- **2 (b)** The reaction produces a racemic mixture of chiral molecules.
- **2** (b) (i) Explain the meaning of the term racemic mixture.

[1 mark]

2 (b) (ii) State the relationship between two chiral molecules with the same structural formula.

[1 mark]

2 (c) In the presence of an acid catalyst such as dry hydrogen chloride, ethanal reacts with an excess of ethanol to form an acetal.

The overall reaction of ethanal with an excess of ethanol forms an equilibrium mixture as shown. All reactants and products are liquids.

$$\begin{array}{c} & \text{H} \\ | \\ \text{H}_{3}\text{C} - \text{C} - \text{OCH}_{2}\text{CH}_{3} \\ \text{CH}_{3}\text{CHO} & + & \text{2CH}_{3}\text{CH}_{2}\text{OH} & + & \text{H}_{2}\text{O} \\ & & \text{OCH}_{2}\text{CH}_{3} \\ \end{array}$$

an acetal

A mixture of 0.75 mol of ethanal and 5.00 mol of ethanol was left to reach equilibrium in the presence of dry hydrogen chloride at a given temperature. The equilibrium mixture contained 0.42 mol of the acetal.

2 (c) (i) Calculate the amount, in moles, of ethanal and of ethanol in this equilibrium mixture.

[2 marks]

Amount of ethanal	mol
Amount of ethanol	mol
Space for working	

. , , ,	In a different experiment using the same reaction as in part (c), an equilibrium mix was established at a given temperature. This mixture contained 0.58 mol of ethanal, 3.76 mol of ethanol, 0.37 mol of the and 0.65 mol of water in a total volume of 310 cm ³ .	
	Write an expression for the equilibrium constant $K_{\rm c}$ for this reaction. Calculate a value for $K_{\rm c}$ at this temperature. Give units with your answer. [4	marks]
	K _c	
	Calculation	
` '	Draw the structure of the acetal ($C_4H_8O_2$) formed by the reaction of ethanal with ethane-1,2-diol. [$^\prime$	1 mark]
2 (d)	Draw the structure of the acetal ($C_4H_8O_2$) formed by the reaction of ethanal with ethane-1,2-diol.	

12

3 Lidocaine is a local anaesthetic used in dentistry and in minor surgical operations. The synthesis of lidocaine in 2 steps from 2,6-dimethylphenylamine is shown.

X

3 (a) (i) Give the IUPAC name of reagent X in Step 1.

[1 mark]

3 (a) (ii) Outline a mechanism for Step 1. In your answer, use RNH₂ to represent 2,6-dimethylphenylamine.

[4 marks]

3 (b) Name the mechanism for Step 2.

[1 mark]

3 (c)	Which of these is the total number of peaks in the ¹³ C n.m.r spectrum of lidocaine?	
	Tick (✓) one box. [1 m	ark1
	8 9 11 12	ar Kj
3 (d)	Calculate the percentage by mass of hydrogen in a molecule of lidocaine. [2 ma	rks]
3 (e)	Give the name, including the classification, of the functional group that contains the nitrogen atom labelled b .	ark]
3 (f) 3 (f) (i)	Lidocaine is used medically as the salt lidocaine hydrochloride. Suggest which one of the nitrogen atoms labelled a or b is protonated in lidocaine hydrochloride. Explain your answer. [3 ma]	rks]
		-
	Nitrogen atom protonated	
	Nitrogen atom protonated Explanation	
	Explanation	
3 (f) (ii)	Explanation	'ks]
3 (f) (ii)	Explanation Suggest why lidocaine hydrochloride is used medically in preference to lidocaine. Explain your answer.	rks]

9

- 4 Compound **X** (ClCH₂COCl) is used as a reagent in organic synthesis.
- 4 (a) The mass spectrum of X contains several molecular ion peaks.
- **4 (a) (i)** Chlorine exists as the isotopes ³⁵Cl and ³⁷Cl in a 3:1 ratio.

Calculate the m/z value of the most abundant molecular ion peak in the mass spectrum of X.

[1 mark]

4 (a) (ii) The most abundant fragment ion in the mass spectrum of X has m/z = 77.

Draw the displayed formula of this fragment ion.

[1 mark]

4 (a) (iii) A molecular ion of **X** that contains one 35 Cl atom and one 37 Cl atom undergoes fragmentation to form an ion with m/z = 65 and one other species.

Write an equation for this fragmentation. Show which isotope of chlorine is present in each product species.

[2 marks]

4 (b) One important reaction of **X** is in the preparation of compound **P** as shown.

X

4 (b) (i) Draw the structure of the electrophile formed by the reaction of X with AlCl₃

[1 mark]

4 (b) (ii) Outline the mechanism for the reaction of the electrophile from part **(b)(i)** with benzene in the preparation of **P**.

[3 marks]

4 (c) Compound **Q** is an alternative product that could be formed when **X** reacts with benzene.

$$\begin{array}{c} O \\ \parallel \\ CH_2 - C - CI \end{array}$$

Q

Describe how you could distinguish between ${\bf P}$ and ${\bf Q}$ by a test-tube reaction. Give the reagent used and the observation with each compound.

[3 marks]

Reagent _____

Observation with P

Observation with Q _____

4 (d)	X is also used to make the compound HOCH ₂ COOH. This compound is polymeris form the polymer known as PGA. PGA is used in surgical sutures (stitches).	sed to
4 (d) (i)		mark]
4 (d) (ii)	Production of PGA occurs via a cyclic compound. Two HOCH ₂ COOH molecules r together to form the cyclic compound and two molecules of water.	react
	Draw the structure of this cyclic compound. [1	mark]
4 (e)	Poly(propene) is also used in surgical sutures.	
4 (e) (i)	Draw the repeating unit of poly(propene). [1	mark]

4 (e) (ii)	Suggest an advantage of surgical sutures made from PGA rather than from poly(propene). Explain your answer.	[2 marks]

16

Turn over for the next question

- Proteins contain sequences of amino acids joined by peptide links.
 Amino acid chains (polypeptides) are attracted to each other by hydrogen bonding.
- **5 (a) (i)** A section of a protein is formed from one molecule of each of the amino acids glycine (H₂NCH₂COOH) and alanine (H₂NCH(CH₃)COOH).

Add bonds and atoms to the diagram to complete a structural formula for this section of the protein.

[2 marks]

$$C \sim C \sim N \sim C \sim N \sim N$$

5 (a) (ii) Draw a diagram to show how an amino acid chain can form a hydrogen bond with another amino acid chain.

Your diagram need only show the relevant atoms from one amino acid in each chain.

[1 mark]

5 (b) Leucine, serine and glutamic acid are naturally-occurring amino acids.

$$(CH_{3})_{2}CHCH_{2} - \begin{matrix} H & & H & & H \\ | & C - COOH & HOCH_{2} - \begin{matrix} C - COOH & HOOC(CH_{2})_{2} - \begin{matrix} C - COOH \\ | & NH_{2} & NH_{2} \end{matrix}$$

leucine serine glutamic acid

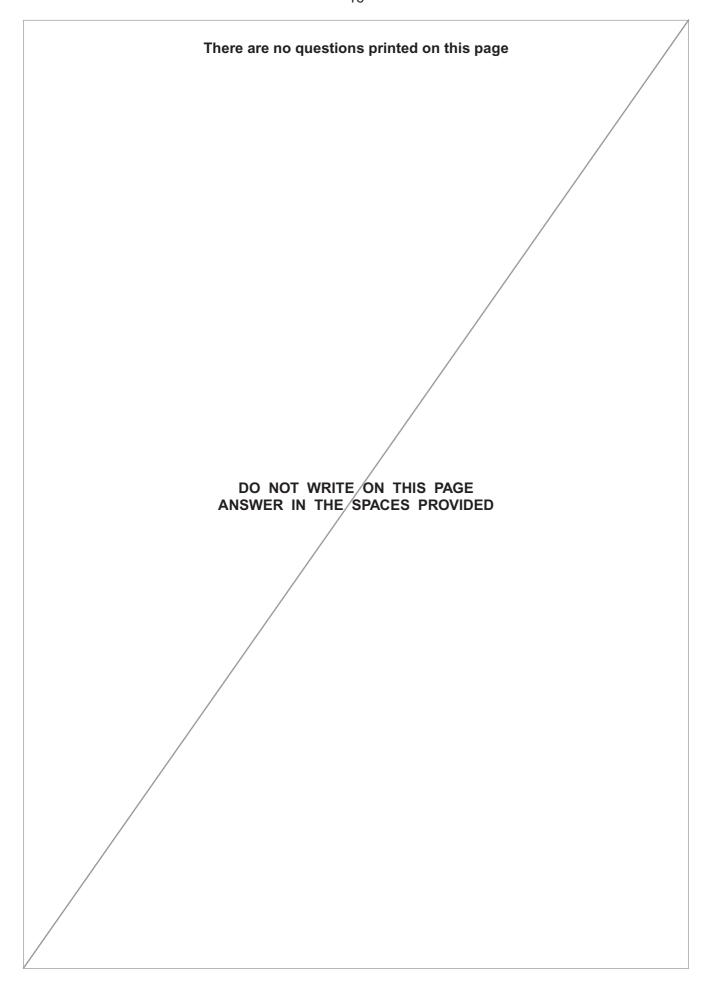
5 (b) (i) Give the IUPAC name of leucine.

[1 mark]

5 (b) (ii) Draw the structure of the zwitterion of serine.

[1 mark]

5 (b) (iii) Draw the structure of the ester formed by two molecules of serine.


[1 mark]

5 (b) (iv) Draw the structure of the species formed by glutamic acid at low pH.

[1 mark]

7

The initial rate of the reaction between gases **D** and **E** was measured in a series of experiments at a constant temperature. The results are shown in **Table 1**.

Table 1

Expt	Initial [D] / mol dm ⁻³	Initial [E] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	1.25×10^{-2}	5.81×10^{-1}	1.16 × 10 ⁻²
2	1.88 × 10 ⁻²	8.73 × 10 ⁻¹	3.92×10^{-2}
3	1.88 × 10 ⁻²	1.75	1.57 × 10 ⁻¹

Deduce the order of reaction with respect to D and the order with respect to E . [2 marks]
Order with respect to D
Order with respect to E
Space for working
Suggest why initial rates of reaction are used to determine these orders rather than rates of reaction at other times during the experiments. [1 mark]
State how the initial rate is obtained from a graph of the concentration of the product against time.
[2 marks]

7	The reaction between propanone and iodine in the presence of hydrochloric acid was
	studied at a constant temperature.

$$CH_3COCH_3 + I_2 \longrightarrow CH_3COCH_2I + HI$$

The following rate equation was deduced.

rate =
$$k$$
 [CH₃COCH₃][H⁺]

7	(a)	Suggest why the order with respect to iodine is zer	ro
-	()		

[1 mark]

7 (b) In an experiment the initial concentrations of propanone, iodine and hydrochloric acid were as shown in **Table 2**. The initial rate of reaction in this experiment was 8.64×10^{-7} mol dm⁻³ s⁻¹.

Table 2

	Initial concentration / mol dm ⁻³
CH₃COCH₃	5.82×10^{-2}
l ₂	1.78 × 10 ⁻³
H⁺	4.76×10^{-1}

Use the data in **Table 2** and the rate equation to calculate a value for the rate constant at this temperature.

Give units with your answer.

[2 marks]

c)	A series of experiments was carried out using concentrations of propanone approximately 100 times the concentrations of iodine and hydrochloric acid.	
	Suggest the rate equation under these conditions. Explain your answer.	
		[2 marks]

Turn over for the next question

Section B

Answer all questions in the spaces provided.

8 A four-step synthesis of compound **T** is shown.

$$CH_{3}-C \downarrow O \\ CH_{2}CH_{3} \qquad Step 1 \\ CH_{3}CH(OH)CH_{2}CH_{3} + CH_{3}COONa \\ CH_{3}CHBrCH_{2}CH_{3} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{3}-CH-CH_{2}CH_{3} \qquad Step 4 \\ Compound S$$

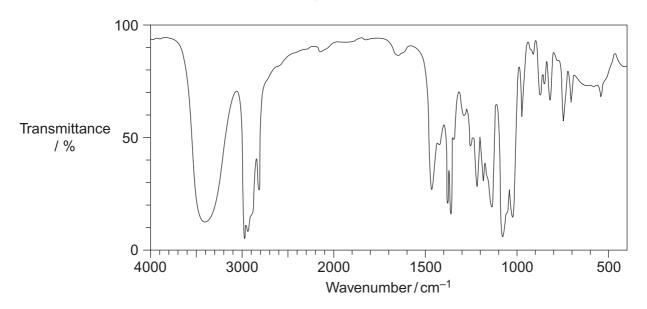
Compound T

8 (a) Give the reagent and conditions for Step 1.
State how you could obtain a sample of the alcohol from the reaction mixture formed in Step 1.

		[3 marks]

8 (b)	Draw the structure of compound S . For each of Steps 3 and 4 , give a reagent and one condition, other than heat.	[5 marks]

9 Compound **R** contains 61.0% carbon and 11.9% hydrogen by mass. The remainder is oxygen.


The mass spectrum of **R** contains a molecular ion peak at m/z = 118

9 (a) Use these data to show that the molecular formula of \mathbf{R} is $C_6H_{14}O_2$

[3	ma	rks]
----	----	------

9 (b) The infrared spectrum of R ($C_6H_{14}O_2$) is shown in Figure 1.

Figure 1

The proton n.m.r. spectrum of **R** contains five peaks. The chemical shift values, integration ratios and splitting patterns of these peaks are given in **Table 3**.

Table 3

Chemical shift/ppm	3.8	3.2	3.1	1.4	1.1
Integration ratio	2	3	1	2	6
Splitting patterns	triplet	singlet	singlet	triplet	singlet

Lice Table A and Table P on the data sheet and all of the data provided in t	ho
Use Table A and Table B on the data sheet and all of the data provided in t to deduce the structure of R .	пе
In your answer, explain how you have used the data provided in the question	١.

END OF QUESTIONS

12

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

